

PROJECT GOALS

- Provide performance bounds in locality space using real world computational kernels
- Allow scaling of input data size and time to run according to the system capability
- Verify the results using standard error analysis
- Allow vendors and users to provide optimized code for superior performance
- Make the benchmark information continuously available to the public in order to disseminate performance tuning knowledge and record technological progress over time
- Ensure reproducibility of the results by detailed reporting of all aspects of benchmark runs

LOCALITY SPACE OF MEMORY ACCESS IN APPLICATIONS

HPCC RESULTS' PAGE

FEATURE HIGHLIGHTS OF HPCC 1.4.2 RELEASED OCTOBER 2012

- Increased sizes of scratch vectors for local FFT tests to account for runs on systems with large main memory (reported by IBM, SGI and Intel).
- Reduced vector size for local FFT tests due to larger scratch space needed.
- Added a type cast to prevent overflow of a 32-bit integer vector size in FFT data generation routine (reported by IBM).
- Fixed variable types to handle array sizes that overflow 32-bit integers in RandomAccess (reported by IBM and SGI).
- Changed time-bound code to be used by default in Global RandomAccess and allowed for it to be switched off with a compile time flag if necessary.
- Code cleanup to allow compilation without warnings of RandomAccess test.
- Changed communication code in PTRANS to avoid large message sizes that caused problems in some MPI implementations.
- Updated documentation in README.txt and README.html files.

KIVIAT CHART WITH RESULTS FOR THREE DIFFERENT CLUSTERS

Dalco Opteron/QsNet Linux Cluster AMD Opteron 64 procs – 2.2 GHz 1 thread/MPI process (64) QsNetII 11-04-2004

Cray XD1 AMD Opteron 64 procs – 2.2 GHz 1 thread/MPI process (64) RapidArray Interconnect System 11-22-2004

Sun Fire V20z Cluster AMD Opteron 64 procs – 2.2 GHz 1 thread/MPI process (64) Gigabit Ethernet, Cisco 6509 switch 03-06-2005

SUMMARY OF HPCC AWARDS

CLASS 1: Best Performance

- Best in G-HPL, EP-STREAM-Triad per system, G-RandomAccess, G-FFT
- There will be 4 winners (one in each category)

CLASS 2: Most Productivity

- One or more winners
- Judged by a panel at SC12 BOF
- Stresses elegance and performance
- Implementations in various (existing and new) languages are encouraged
- Submissions may include up to two kernels not present in HPCC
- Submission consists of: code, its description, performance numbers, and a presentation at the BOF

PONSORED BY

MORE AT

FIND OUT

HPCC AWARDS CLASS 1: PERFORMANCE

HPCC BENCHMARKS

HPL

This is the widely used implementation of the Linpack TPP benchmark. It measures the sustained floating point rate of execution for solving a linear system of equations. STREAM

A simple benchmark Measures the rate of integer updates to sustainable memory bandwidth (in GB/s) and the corresponding computation rate for four vector kernel codes. Measures the rate of integer updates to random locations in large global memory array.

RandomAccess PTRANS

DARPA

Implements parallel matrix transpose that exercises a large volume communication pattern whereby pairs of processes communicate with each other simultaneously.

FFT

Calculates a Discrete Fourier Transform (DFT) of very large one-dimensional complex data vector.

b_eff

Effective bandwidth benchmark is a set of MPI tests that measure the latency and bandwidth of a number of simultaneous communication patterns.

DGEMM

Measures the floating point rate of execution of double precision real matrix-matrix multiplication.

SPONSORED BY

