HPC Challenge Awards: Class 2 Specification

Contents

1 General Guidelines

2 HPL
2.1 Description
2.2 DataSize
2.3 Initialization
24 Timed Region
25 Duration.
2.6 Verification
2.7 Performance
2.8 Alternative Implementations
3 RandomAccess
3.1 Description
32 DataSize
3.3 Initialization
34 Timed Region
3.5 Duration.
3.6 Verification
3.7 Performance
3.8 Alternative Implementations
4 Global EP-STREAM-Triad
4.1 Description
42 DataSize
4.3 [Initialization
4.4 Timed Region
45 Duration
4.6 Verification
4.7 Performance
4.8 Alternative Implementations
5 Global FFT
5.1 Description
52 DataSize
5.3 Initialization
5.4 TimedRegion
5.5 Duration.
5.6 Verification
5.7 Performance
5.8 Alternative Implementations

Jack Dongarra

Piotr Luszczek

June 2005

p—

W L W W W W W W W [SSIROST (O (SN (S I (TN (Ol (O 8 [NS 2N SO S I NS ST NS ST

A bhBA AP VWWLWW

1 General Guidelines
1. The use of high level languages is encouraged.

2. Calls to tuned library routines could be used in the sub-
mission but explicit and “elegant” coding of all aspects
of the benchmark is preferred.

3. The entire benchmark could be expressed by using a few
built-in operators of an hypothetical programming lan-
guage. However, such submissions are strongly discour-
aged as they only show operator overloading and funci-
ton call syntax and say nothing about the language. In
particular, how it deals with issues critical to HPC like
expressing parallelism and hiding latency.

2 HPL

HPL (High Performance Linpack) is an implementation of the
Linpack TPP (Toward Peak Performance) variant of the origi-
nal Linpack benchmark which measures the floating point rate
of execution for solving a linear system of equations.

2.1 Description
HPL solves a linear system of equations of order n:
Ax=b; AcR" x,hbcR" (1)

by first computing LU factorization with row partial pivoting
of the n by n+ 1 coefficient matrix:

P[A’b} = [[L,U],y]. 2

Since the row pivoting (represented by the permutation ma-
trix P) and the lower triangular factor L are applied to b as the
factorization progresses, the solution x is obtained in one step
by solving the upper triangular system:

Ux=y. 3)

The lower triangular matrix L is left unpivoted and the array
of pivots is not returned.

2.2 Data Size

A is n by n double precision (in IEEE 754 sense) matrix, b is
n-element vector. The size of the A matrix (8n bytes) should
be at least half of the system memory.

2.3 Initialization

Both A and b should contain values produced by a reason-
able pseudo-random generator with an expected mean of zero.
“Reasonable” in this context means compact, fast, and pro-
ducing independent and identically distributed elements.

2.4 Timed Region

The timed portion of the code performs steps given by equa-
tions (2) and (3) and does not include time to generate A and .

2.5 Duration

Until solution to (1) is obtained.

2.6 Verification

Correctness of the solution is ascertained by calculating the
following scaled residual:

|Ax — b||w

- 4
"= AT+ [6)n @

where € is machine precision for 64-bit floating-point values
and n is the size of the problem. The solution is valid if the
following holds:

r<16)

2.7 Performance

The operation count for the factorization phase is %n3 — %nz

and 2n? for the solve phase thus if the time to solution is 7g
the formula for performance (in Gflop/s) is:
2,332

ki LTI

(6)

2.8 Alternative Implementations

If an alternative algorithm is chosen it should be able to deal
with zeros on the diagonal (some sort of pivoting needs to be
used) and the precision of the calculations needs to be pre-
served.

3 RandomAccess

3.1 Description

Let T[] be a table of size 2".

Let {a;} be a stream of 64-bit integers of length Ny = 22
generated by the primitive polynomial over GF(2)':

A0 2 Fxt1.

For each q;, set

Ta;(63,64 —n)] < T[a;(63,64 —n)] ® a @)

where:
e & denotes addition in GF(2) i.e. “exclusive or” (XOR)

e a;(l,k) denotes the sequence of bits within a;, e.g.
(63,64 — n) are the highest n bits.

3.2 Data Size

The parameter m(= 2") is defined such that:

m is the largest power of 2 that is less than or equal to half of
the system memory. Since the elements of the main table are
64-bit quantities, the table occupies 8m bytes of memory.

3.3 Initialization

Table elements are set such that:

®)

v0§i<2" T [l] =i

3.4 Timed Region

The timed region consists of computation (7). The initializa-
tion (8) is not timed.

3.5 Duration

Ideally, 2"*2 updates should be performed to the main ta-
ble (Ny = 2"*%). However, the computation can be prema-
turely stopped after 25% of the time of the HPL run (but not
shorter than 1 minute). Thus:

Ny <22 ©)

3.6 Verification

The update defined by (7) should be repeated by an alterna-
tive method that is safe (does not generate errors resulting
from, for example, race conditions in memory updates). If
the benchmarked update was correct, the table should return

!Galois Field of order 2 — The elements of GF(2) can be represented using
the integers 0 and 1, i.e., binary operands.

to its initial state defined by (8). However, 1% of entries may
have incorrect values, i.e. given a function:

N J O ifT[]=i
fi)= { 1 otherwise (10)
the following should hold:
Ny
Y () <107°Ny (11)
i=0

3.7 Performance

Let frandomAcccess be the time it took to finish the timed por-
tion of the test (including Ny updates) then peroformance (in
GUPS: Giga Updates Per Second) is defined as:

Ny

IRandomAcccess

1077, (12)

PRandomAcccess =

3.8 Alternative Implementations

Constraints on the look-ahead and storage before process-
ing on distributed memory multi-processor systems is limited
to 1024 per process (or processing element). The pseudo-
random number generator that generates sequence {a;} has to
be used.

4 Global EP-STREAM-Triad

4.1 Description

EP-STREAM-Triad is a simple benchmark program that mea-
sures sustainable memory bandwidth (in Gbyte/s) and the cor-
responding computation rate for a simple vector kernel oper-
ation that scales and adds two vectors:

a<—b+aoac (13)

where:

a,b,ceR™; aeR.

The computation is peformed simultaneously on each com-
puting element on its local data set.

4.2 Data Size

a, b, and c are m-element double precision vectors. The com-
bined size of the vectors (24m bytes) should be at least quarter
of the system memory.

4.3 Initialization

Vectors b and ¢ should contain values produced by a reason-
able pseudo-random number generator.

4.4 Timed Region

The timed portion of the code should perform operation given
by (13) at least 10 times.

4.5 Duration

The kernel operation should be repeated at least 10 times.

4.6 Verification

The norm of the difference between reference and computed
vectors is used to verify the result: |a —d||. The reference
vector 4 is obtained by an alternative implementation.

4.7 Performance

The benchmark measures Gbyte/s and the number of items
transferred is 3m. The minimum time #,;, is taken of all the
repetitions of the kernel operation. Performance is thus de-

fined as:
m

PEP-STREAM Triad = 24— 1077 (14

tmln
4.8 Alternative Implementations
S Global FFT

5.1 Description

FFT measures the floating point rate of execution of double
precision complex one-dimensional Discrete Fourier Trans-
form (DFT) of size m:

Zi— Y e M 1<k<m (15)
J

where:
z,Ze C".

5.2 Data Size

Z and z are m-element double precision complex vectors. The
combined size of the vectors (32m bytes) should be at least
quarter of the system memory. The size m of the vectors can
be implementation-specific, e.g. be an integral power of 2.

5.3 Initialization

Vector z should contain values produced by a reasonable
pseudo-random number generator. The real and imaginary
parts of z should be generated independently. The layout of
vectors z and Z should not be scrambled either before or after
the computation.

5.4 Timed Region

The computation implied by (15) is timed together with the
portion of code that unscrambles (if necessary) the resulting
vector data. Timing for computation and unscrambling can be
given separately for informational purposes but the combined
time is used for calculating performance.

5.5 Duration

Until the transform defined by (15) is obtained.

5.6 Verification

Verification is done by acertainig the following bound on the
residual: le—2l
Z—Z|eo
cInm <16 (16)
where Z is the result of applying a reference implementation
of the inverse transform to the outcome of the benchmarked
code (in infinite-precision arithmetic the residual should be

ZEero):

m ik
G Y Zjen, 1<k<m (17)
]

5.7 Performance

The operation count is taken to be Smlog, m for the calcula-
tion of the computational rate (in Gflop/s) in time ¢:

mlog, m

PreT =5 1077 (18)

5.8 Alternative Implementations

The reference implementation splits the algorithm into com-
putational and communication portions which do not overlap.
Valid submsissions may choose other methods that take ad-
vantage of language and architectural features.

The number of processors may be implementation-specific,
e.g. be an integral power of 2.

	General Guidelines
	HPL
	Description
	Data Size
	Initialization
	Timed Region
	Duration
	Verification
	Performance
	Alternative Implementations

	RandomAccess
	Description
	Data Size
	Initialization
	Timed Region
	Duration
	Verification
	Performance
	Alternative Implementations

	Global EP-STREAM-Triad
	Description
	Data Size
	Initialization
	Timed Region
	Duration
	Verification
	Performance
	Alternative Implementations

	Global FFT
	Description
	Data Size
	Initialization
	Timed Region
	Duration
	Verification
	Performance
	Alternative Implementations

